

Funct

Product Information

Pin No. 3 6

1, 2, 4, 5

#### **Product Features**

- DC 6000 MHz
- +7.5 dBm P1dB at 900 MHz
- +20 dBm OIP3 at 900 MHz
- 15 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-363 SMT Pkg.
- Internally matched to 50  $\Omega$

### **Applications**

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

## Specifications (1)

#### **Product Description**

The AG202-63 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG202-63 typically provides 15 dB gain, +20 dBm OIP3, and +7.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85° C and is housed in a lead free/green/RoHS-compliant SOT-363 industry states and SMT package.

The AG202-63 consists of Darlington pair ampked since the high reliability InGaP/GaAs HBT technology and only requires DC-blocking pactors, bias resistor, and an inductive RF choke for the former of the since technology and technology and the since technology and the since technology and the since technology and the since technology and technology at the since technol

The broadband MMIC amplifier can be ecfly applies various current and next generation wireless tech ogies such as GPRS, GSM, CDMA, and CDMA. CDMA. The AG202-63 will work for restriction various cation within the DC to 6 GHz and fixed wireless.

# cal Corformance<sup>(1)</sup>

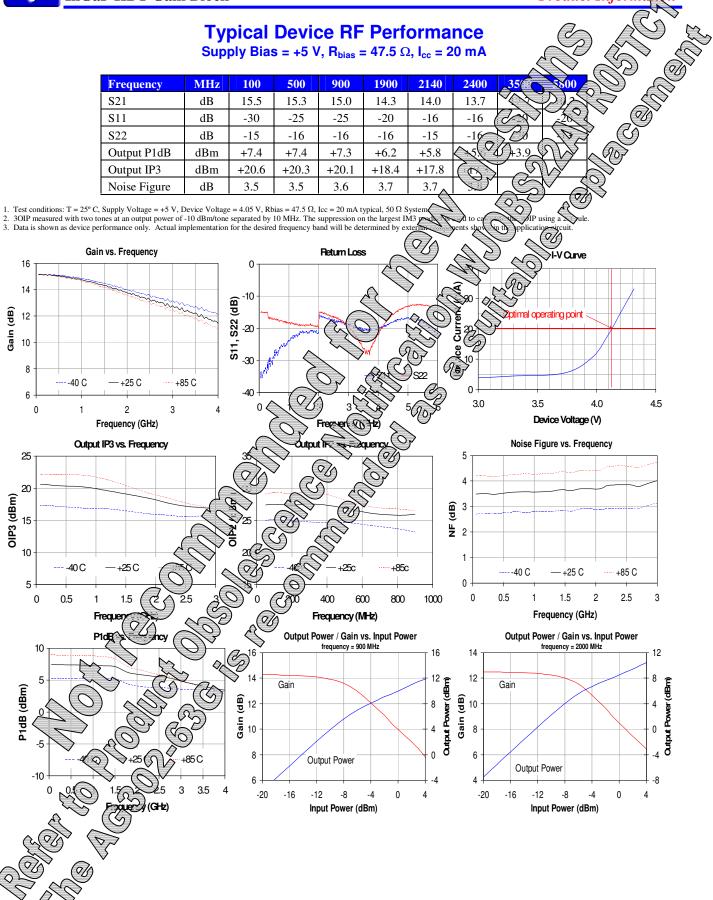
| Parameter                                                                                                               | Units                  | Min                               | Ty                                              | Jax           | Caraceter        | Units | _     | Тур   | oical |       |
|-------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-------------------------------------------------|---------------|------------------|-------|-------|-------|-------|-------|
| Operational Bandwidth                                                                                                   | MHz                    | DC                                |                                                 | 26000K        | Freque           | MHz   | 500   | 900   | 1900  | 2140  |
| Test Frequency                                                                                                          | MHz                    |                                   | $\langle Q \rangle$                             |               | $\searrow$ 52100 | dB    | 15.3  | 15.0  | 14.3  | 14.0  |
| Gain                                                                                                                    | dB                     | (                                 | 0/AV                                            | 2             |                  | dB    | -25   | -25   | -20   | -16   |
| Input Return Loss                                                                                                       | dB                     | $\sim$                            | St.                                             | 0             |                  | dB    | -16   | -16   | -16   | -15   |
| Output Return Loss                                                                                                      | dB                     | 22                                | 16                                              |               | owutput P1dB     | dBm   | +7.4  | +7.3  | +6.2  | +5.8  |
| Output IP3 <sup>(2)</sup>                                                                                               | dBm                    | $\langle \langle \rangle \rangle$ | +20.                                            | R S           | Output IP3       | dBm   | +20.3 | +20.1 | +18.4 | +17.8 |
| Output IP2                                                                                                              | dBm                    | $\sim$                            | +0                                              |               | Noise Figure     | dB    | 3.5   | 3.6   | 3.7   | 3.7   |
| Output P1dB                                                                                                             | dBr (                  | $\searrow$                        | S                                               | $\mathcal{A}$ | 7                |       |       |       |       |       |
| Noise Figure                                                                                                            |                        | > a(                              | ⊘7.6                                            | SS.           | _                |       |       |       |       |       |
| Test Frequency                                                                                                          | AD                     |                                   | <u>1900</u>                                     | (O) ~         |                  |       |       |       |       |       |
| Gain                                                                                                                    | $\left( \zeta \right)$ | BO                                | 14.                                             | ) 15.3        |                  |       |       |       |       |       |
| Output IP3 <sup>(2)</sup>                                                                                               | Soom S                 | $\sim$                            | +08                                             | ĺ             |                  |       |       |       |       |       |
| Output P1dB                                                                                                             | $\mathcal{O}_{dBn}$    | $\langle \rangle$                 | L.2                                             |               | _                |       |       |       |       |       |
| Device Voltage                                                                                                          | v                      |                                   | 4.05                                            |               |                  |       |       |       |       |       |
| Device Curren                                                                                                           |                        | 000                               | 9 20                                            |               | _                |       |       |       |       |       |
| 1. Test conditions: T<br>2. 30IP measured w<br>suppressive that while sat an out<br>M3 processive that while sat an out |                        | Rm) le sepa                       | Ω System.<br>arated by 10 M<br>sing a 2:1 rule. |               |                  |       |       |       |       |       |

## Absolute Maxim Rating

| Parame                      | Rating         |
|-----------------------------|----------------|
| Operating Case Tel Con ture | -40 to +85 °C  |
| Storag                      | -55 to +125 °C |
| DC Ree V                    | +4.5 V         |
| Ropert Power (continuous)   | +10 dBm        |
| ature                       | +250 °C        |
|                             |                |

### **Ordering Information**

| Part No.  | Description                                                          |
|-----------|----------------------------------------------------------------------|
| AG202-63  | InGaP HBT Gain Block<br>(lead-tin SOT-363 Pkg)                       |
| AG202-63G | InGaP HBT Gain Block<br>(lead-free/green/RoHS-compliant SOT-363 Pkg) |

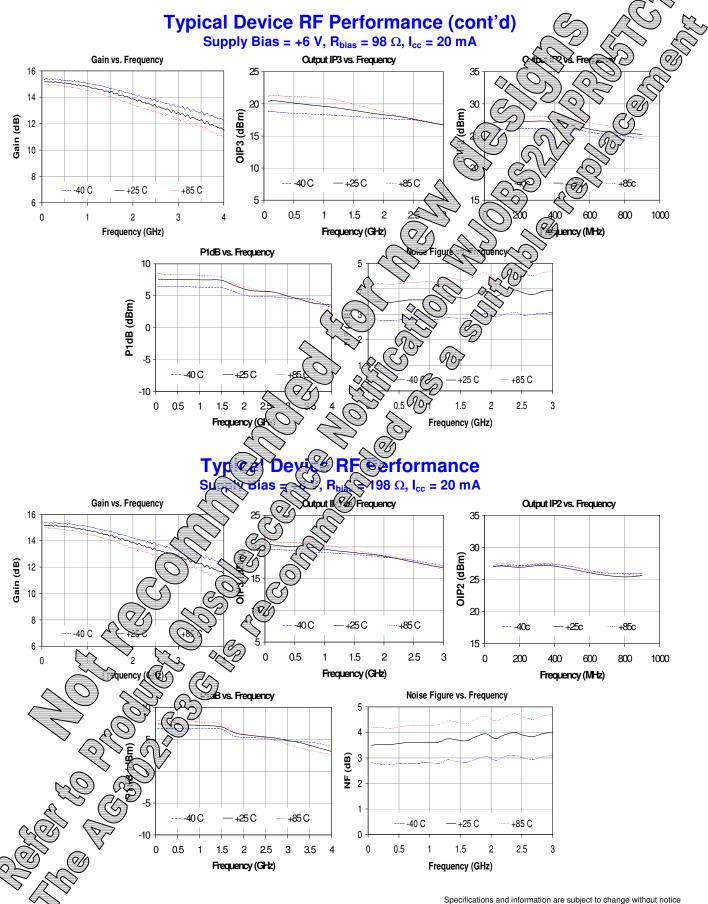

is a ce above any of these parameters may cause permanent damage.

Specifications and information are subject to change without notice



The Communications Edge  $^{TM}$ 

Product Information

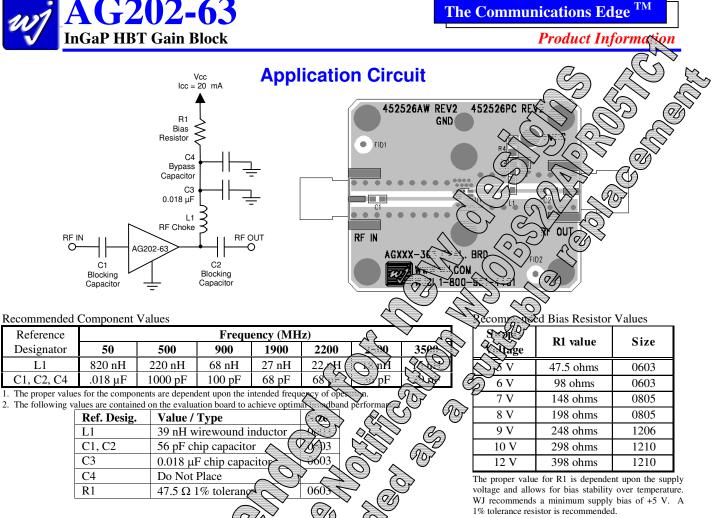



Specifications and information are subject to change without notice



The Communications Edge <sup>TM</sup>

Product Information




WJ Communications, Inc • Phone 1-800-WJ1-4401 • FAX: 408-577-6621 • e-mail: sales@wj.com • Web site: www.wj.com



L1

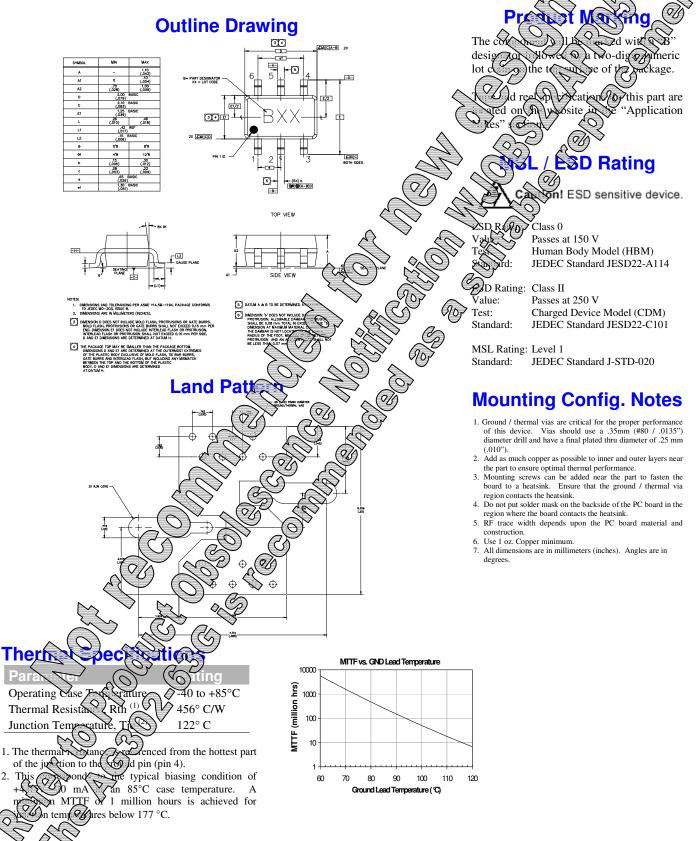
1.



| $\sqrt{\sqrt{A^*}}$                     | (0)                       |                                                   |      |
|-----------------------------------------|---------------------------|---------------------------------------------------|------|
|                                         | <b>Dey Se</b>             | <b>Data</b><br>T = 25°C, calibrated to device lea |      |
|                                         |                           |                                                   | 1 \  |
| $e_{\rm M}$ $d_{\rm evice} = e_{\rm M}$ | $V, I_{CC} \rightarrow A$ | $I = 25^{\circ}C$ , calibrated to device lea      | uas) |

|               |                    |           |                                        | $2 < \infty$     |          |                  |          |          |
|---------------|--------------------|-----------|----------------------------------------|------------------|----------|------------------|----------|----------|
|               |                    | S-Parz Cr | $V_{\text{device}} = A_{\text{const}}$ | $I_{\rm CC}$ $A$ |          | ibrated to devic |          |          |
| Freq (MHz)    | S11 (dB)           | St (ang)  | S2 357                                 | S2. (19)         | S12 (dB) | S12 (ang)        | S22 (dB) | S22 (ang |
| 50            | -34.88             |           | C >>                                   | .22              | -19.32   | 2.00             | -15.02   | -2.74    |
| 250           | -33.95             | 315       | Q 40 C                                 | 71.71            | -19.64   | 2.85             | -15.05   | -7.04    |
| 500           | -28.81             | V06.32    | 5.35                                   | 162.96           | -19.61   | -0.52            | -17.20   | -13.99   |
| 750           | -25.(-             | V 96.     | 15.22                                  | 154.76           | -19.56   | -1.68            | -17.61   | -24.03   |
| 1000          | 24                 | 837       | × 15.0                                 | 146.88           | -19.92   | -4.77            | -18.23   | -34.16   |
| 1250          | (Q.1)              | 78        | (C))                                   | 138.65           | -19.36   | -4.41            | -18.72   | -48.66   |
| 1500          | $\rightarrow$      | $\sim P$  | Q14.74                                 | 130.82           | -19.27   | -4.53            | -19.01   | -59.37   |
| 1750          | √ <u>(</u> 3).78 ∕ | 0)01      | 4.52                                   | 123.20           | -19.34   | -3.89            | -19.06   | -72.58   |
| 2000          | 19.99              | 56.26     | ▶ 14.26                                | 115.55           | -19.21   | -5.07            | -18.92   | -82.88   |
| 2250          | -16.02             | 37.00     | 13.95                                  | 108.62           | -19.12   | -7.05            | -15.48   | -85.78   |
| $\Sigma$      | -17                | 29.       | 13.76                                  | 103.39           | -19.39   | -12.17           | -16.59   | -92.10   |
| - A           | -1. (4)            | CP334     | 13.55                                  | 96.11            | -18.71   | -10.78           | -17.59   | -98.68   |
| (0)           | 103                | 48        | 13.31                                  | 89.35            | -18.52   | -8.89            | -19.53   | -108.4   |
| 2250          |                    | 24.09     | 13.07                                  | 82.85            | -18.58   | -8.90            | -22.46   | -117.1   |
| -300 6        | 20.7               | 28.34     | 12.84                                  | 76.26            | -18.43   | -11.65           | -26.41   | -146.6   |
| 3750          | 9-20.75            | 34.04     | 12.55                                  | 69.65            | -18.13   | -12.90           | -26.25   | 156.92   |
| 400           | -MZ                | 43.93     | 12.25                                  | 62.91            | -18.16   | -15.07           | -21.96   | 126.85   |
| 4250          | ( N                | 54.02     | 11.97                                  | 56.60            | -17.74   | -17.90           | -18.09   | 115.11   |
|               | .09                | 61.09     | 11.64                                  | 50.16            | -17.76   | -18.43           | -15.79   | 109.48   |
|               | 17.31 (C           | 65.42     | 11.34                                  | 43.62            | -17.54   | -21.15           | -14.19   | 106.76   |
| 0 300 (CS     | -16.58             | 67.96     | 11.07                                  | 37.62            | -17.42   | -24.93           | -13.08   | 107.39   |
| 5259          | -17.06             | 69.69     | 10.77                                  | 31.99            | -17.10   | -25.37           | -12.76   | 106.71   |
| 550 ~~~       | -18.02             | 68.16     | 10.48                                  | 26.85            | -17.15   | -26.66           | -12.67   | 107.57   |
| 5750♥         | -19.89             | 72.27     | 10.33                                  | 21.48            | -16.98   | -28.74           | -13.22   | 110.20   |
| <b>( %)</b> 0 | -22.77             | 70.39     | 10.17                                  | 16.11            | -16.63   | -31.10           | -13.58   | 111.24   |

Device S-parameters are available for download on the website at: http://www.wj.com

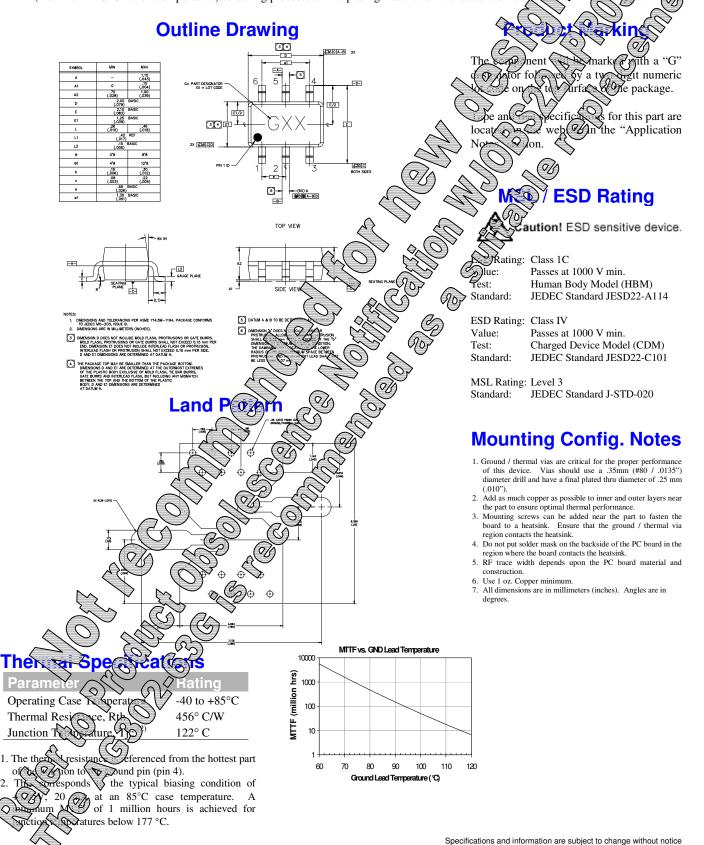

Specifications and information are subject to change without notice







This package may contain lead-bearing materials. The plating material on the leads is S






Product Informa

### AG202-63G (Green / Lead-free SOT-363 Package) Mechanical

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflection) (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is anneales



2